f11 — Sparse Linear Algebra flljec

nag_sparse_sym sol (fl1jec)

1. Purpose

nag_sparse_sym sol (flljec) solves a real sparse symmetric system of linear equations, represented
in symmetric coordinate storage format, using a conjugate gradient or Lanczos method, without
preconditioning, with Jacobi or with SSOR preconditioning.

2. Specification

#include <nag.h>
#include <nagfll.h>

void nag_sparse_sym_sol(Nag_SparseSym_Method method,
Nag_SparseSym_PrecType precon, Integer n, Integer nnz,
double a[], Integer irow[], Integer icoll[],
double omega, double b[], double tol,
Integer maxitn, double x[], double *rnorm,
Integer *itn, Nag_Sparse_Comm *comm, NagError *fail)

3. Description

This routine solves a real sparse symmetric linear system of equations:
Azr = b,

using a preconditioned conjugate gradient method (see Barrett et al. (1994)), or a preconditioned
Lanczos method based on the algorithm SYMMLQ (Paige and Saunders (1975)). The conjugate
gradient method is more efficient if A is positive-definite, but may fail to converge for indefinite
matrices. In this case the Lanczos method should be used instead. For further details see Barrett
et al. (1994).

The routine allows the following choices for the preconditioner:

no preconditioning;

Jacobi preconditioning (see Young (1971);

symmetric successive-over-relaxation (SSOR) preconditioning (see Young (1971)).
For incomplete Cholesky (IC) preconditioning see nag_sparse_sym_chol_sol (flljcc).

The matrix A is represented in symmetric coordinate storage (SCS) format (see Section 2.1.2 of
the Chapter Introduction) in the arrays a, irow and icol. The array a holds the non-zero entries in
the lower triangular part of the matrix, while irow and icol hold the corresponding row and column
indices.

4. Parameters

method
Input: specifies the iterative method to be used. The possible choices are:

if method = Nag_SparseSym_CG then the conjugate gradient method is used;
if method = Nag_SparseSym _Lanczos then the Lanczos method (SYMMLQ) is used.
Constraint: method = Nag_SparseSym_CG or Nag_SparseSym_Lanczos.

precon
Input: specifies the type of preconditioning to be used. The possible choices are :

if precon = Nag_SparseSym_NoPrec then no preconditioning is used;

if precon = Nag_SparseSym_SSORPrec then symmetric successive-over-relaxation is
used;

if precon = Nag_SparseSym _JacPrec then Jacobi preconditioning is used.

Constraint: precon = Nag_SparseSym_NoPrec, Nag_SparseSym_SSORPrec or
Nag_SparseSym_JacPrec.

[NP3275/5/pdf] 3.fl1jec. 1

nag_sparse_sym_sol NAG C Library Manual

n
Input: the order of the matrix A.
Constraint: n > 1.
nnz
Input: the number of non-zero elements in the lower triangular part of the matrix A.
Constraint: 1 < nnz < n x (n+1)/2.
a[nnz]
Input: the non-zero elements of the lower triangular part of the matrix A, ordered by
increasing row index, and by increasing column index within each row. Multiple entries
for the same row and column indices are not permitted. The routine nag_sparse_sym.sort
(f11zbc) may be used to order the elements in this way.
irow[nnz]
icol[nnz|
Input: the row and column indices of the non-zero elements supplied in A.
Constraint: irow and icol must satisfy the following constraints (which may be imposed by a
call to nag_sparse_sym_sort (f11zbc)) :
1 <irow[i] <m, and 1 <icol[i] < irow][i], for ¢ = 0,1,... nnz—1.
irow[i — 1] < irow[i], or
irow[i — 1] = irow[i] and icol[i — 1] < icol[d], for ¢ = 1,2,... nnz—1.
omega
Input: if precon = Nag_SparseSym_SSORPrec, omega is the relaxation parameter w to be
used in the SSOR method. Otherwise omega need not be initialised.
Constraint: 0.0 < omega < 2.0.
bn]
Input: the right-hand side vector b.
tol
Input: the required tolerance. Let z; denote the approximate solution at iteration k, and 7,
the corresponding residual. The algorithm is considered to have converged at iteration k if:
7l < 7% (10l + 1Al ool gl o0)-
If tol < 0.0, 7 = max(y/€, vne) is used, where € is the machine precision. Otherwise
7 = max(tol, 10¢, \/n€) is used.
Constraint: tol < 1.0.
maxitn
Input: the maximum number of iterations allowed.
Constraint: maxitn > 1.
X[n]
Input: an initial approximation of the solution vector x.
Output: an improved approximation to the solution vector zx.
rnorm
Input: the final value of the residual norm |7, ||, where k is the output value of itn.
itn
Output: the number of iterations carried out.
comm
Input/Output: a pointer to a structure of type Nag_Sparse_Comm whose members are used
by the iterative solver.
fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

3.fl1jec.2 [NP3275/5/pdf]

f11 — Sparse Linear Algebra flljec

5. Error Indications and Warnings

NE_BAD_PARAM
On entry, parameter method had an illegal value.
On entry, parameter precon had an illegal value.

NE_REAL_ARG.GE
On entry, tol must not be greater than or equal to 1.0: tol = (value).

NE_INT_ARG_LT
On entry, n must not be less than 1: n = (value).
On entry, maxitn must not be less than 1: maxitn = (value).

NE_REAL
On entry, omega = (value).
Constraint: 0.0 < omega < 2.0.

NE_INT_2
On entry, nnz = (value), n = (value).
Constraint: 1 <nnz <n x (n+1)/2.

NE_SYMM_MATRIX DUP
A non-zero element has been supplied which does not lie in the lower triangular part of the
matrix A, is out of order, or has duplicate row and column indices, i.e., one or more of the
following constraints has been violated:

1 <irow[i] <mnand 1 <icolfi] <irow[i], for i =0,1,...,nnz—1

irow[i — 1] < irow[i], or

irow[i — 1] = irow[¢] and icol[i — 1] < icol[¢], for i = 1,2,... nnz—1.
Call nag_sparse_sym_sort (f11zbc) to reorder and sum or remove duplicates.

NE_COEFF_NOT_POS_DEF
The matrix of coefficients appears not to be positive-definite (conjugate gradient method
only).

NE_ZERO_DIAGONAL_ELEM
The matrix A has a zero diagonal element. Jacobi and SSOR preconditioners are not
appropriate for this problem.

NE_PRECOND_NOT_POS_DEF
The preconditioner appears not to be positive-definite.

NE_ACC_LIMIT
The required accuracy could not be obtained. However, a reasonable accuracy has been
obtained and further iterations cannot improve the result.

NE_NOT_REQ_ACC
The required accuracy has not been obtained in maxitn iterations.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

NE_ALLOC_FAIL
Memory allocation failed.

6. Further Comments
The time taken by nag sparse_sym_sol (flljec) for each iteration is roughly proportional to nnz.
One iteration with the Lanczos method (SYMMLQ) requires a slightly larger number of operations
than one iteration with the conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined
a priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned
matrix of the coefficients A = M1 A.

[NP3275/5/pdf] 3.fl1jec.3

nag_sparse_sym._sol

6.1. Accuracy

NAG C Library Manual

On successful termination, the final residual r,, = b — Ax,,, where k = itn, satisfies the termination

criterion

74lloe < 7% (blloe + [[All ool]l)-

The value of the final residual norm is returned in rnorm.

6.2. References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C
and van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for
Tterative Methods STAM, Philadelphia.

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM
J. Numer. Anal. 12 617-629.

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York.

7. See Also

nag-sparse_sym_chol_sol (f11jcc)
nag_sparse_sym.sort (f11zbc)

8. Example

This example program solves a symmetric positive-definite system of equations using the conjugate

gradient method, with SSOR preconditioning.

8.1. Program Text

/* nag_sparse_sym_sol (flljec) Example Program.

EE I

*/

#include
#include
#include
#include
#include

Copyright 1998 Numerical Algorithms

Mark 5, 1998.

<nag.h>
<stdio.h>
<nag_stdlib.h>
<nag_string.h>
<nagfll.h>

/* flljec Example Program Text */

main()

{
double
double
double
double

*a=0, *b=0, *x=0;
omega;

rnorm;

tol;

Integer *icol, *irow;
Integer i, n, maxitn, itn, nnz;

Nag_SparseSym_Method method;
Nag_SparseSym_PrecType precon;
Nag_Sparse_Comm comm;

char char_enum[20];

Vprintf ("flljec Example Program Results\n");

/* Skip heading in data file */
Vscanf (" %*["\n]");

3.flljec.4

Group.

[NP3275/5/pdf]

f11 — Sparse Linear Algebra flljec

/* Read algorithmic parameters */
Vscanf ("%1d%*["\n]",&n) ;
Vscanf ("%1d%*["\n]",&nnz) ;

Vscanf ("%s",char_enum) ;
if (!strcmp(char_enum, "CG"))
method = Nag_SparseSym_CG;
else if (!strcmp(char_enum, "Lanczos"))
method = Nag_SparseSym_Lanczos;
else
{
Vprintf ("Unrecognised string for method enum representation.\n");
exit (EXIT_FAILURE);
}

Vscanf ("%s%*["\n]",char_enum) ;
if (!strcmp(char_enum, "Prec"))
precon = Nag_SparseSym_Prec;
else if (!strcmp(char_enum, "NoPrec"))
precon = Nag_SparseSym_NoPrec;
else if (!strcmp(char_enum, "SSORPrec"))
precon = Nag_SparseSym_SSORPrec;
else if (!strcmp(char_enum, "JacPrec"))
precon = Nag_SparseSym_JacPrec;
else
{
Vprintf ("Unrecognised string for precon enum representation.\n");
exit (EXIT_FAILURE);
}

Vscanf ("%1f%*["\n]",&omega) ;
Vscanf ("%1£%1d%*["\n]",&tol, &maxitn);

x = NAG_ALLOC(n,double) ;
b = NAG_ALLOC(n,double);
a = NAG_ALLOC(nnz,double) ;

irow = NAG_ALLOC(nnz,Integer);
icol = NAG_ALLOC(unz,Integer);
if (lirow || !icol || ta || 'x || !b)
{
Vprintf ("Allocation failure\n");
exit (EXIT_FAILURE);
}

/* Read the matrix a */
for (i = 1; i <= nnz; ++i)
Vscanf ("%1£%1d%1d%*["\n]",&al[i-1], &irow[i-1], &icol[i-1]);

/* Read right-hand side vector b and initial approximate solution x */
for (i = 1; i <= n; ++i)

Vscanf ("%1f",&b[i-11);
Vscanf (" %*["\nl");

for (i = 1; i <= n; ++i)
Vscanf ("%1f",&x[i-11);
Vscanf (" %*["\nl");

/* Solve Ax = b */
fl1ljec(method, precon, n, nnz, a, irow, icol, omega, b, tol,
maxitn, x, &rnorm, &itn, &comm, NAGERR_DEFAULT);

Vprintf (" %s%101d%s\n","Converged in",itn," iterations");
Vprintf (" %s%16.3e\n","Final residual norm =",rnorm);

/* Output x */

for (i = 1; i <= n; ++i)
Vprintf (" %16.4e\n",x[i-1]);

NAG_FREE(irow) ;

NAG_FREE(icol);

[NP3275/5/pdf] 3.fl1jec.5

nag_sparse_sym_sol NAG C Library Manual

NAG_FREE(a) ;

NAG_FREE(x) ;

NAG_FREE(b) ;

exit (EXIT_SUCCESS);
}

8.2. Program Data
flljec Example Program Data
7

n
16 nnz

CG SSORPrec method, precon
1.1 omega

1.0E-6 100 tol, maxitn

4. 1 1

1. 2 1

5. 2 2

2. 3 3

2. 4 2

3. 4 4
-1. 5 1

1. 5 4

4. 5 5

1. 6 2
-2. 6 5

3. 6 6

2. 7 1
-1. 7 2
-2. 7 3

5. 7 7 ali-1], irow[i-1], icoll[i-1], i=1,...,nnz
15. 18. -8. 21.

11. 10. 29. b[i-1], i=1,...,n
0. 0. 0. 0.

0. 0. 0. x[i-1], i=1,...,n

8.3. Program Results

flljec Example Program Results
Converged in 6 iterations
Final residual norm = 5.026e-06
.0000e+00

.0000e+00

.0000e+00

.0000e+00

.0000e+00

.0000e+00

.0000e+00

~NOoO O WN

3.f11jec.6 [NP3275/5/pdf]

